Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668620

RESUMO

The CPR1953 and CPR1954 orphan histidine kinases profoundly affect sporulation initiation and Clostridium perfringens enterotoxin (CPE) production by C. perfringens type F strain SM101, whether cultured in vitro (modified Duncan-Strong sporulation medium (MDS)) or ex vivo (mouse small intestinal contents (MIC)). To help distinguish whether CPR1953 and CPR1954 act independently or in a stepwise manner to initiate sporulation and CPE production, cpr1953 and cpr1954 null mutants of SM101 were transformed with plasmids carrying the cpr1954 or cpr1953 genes, respectively, causing overexpression of cpr1954 in the absence of cpr1953 expression and vice versa. RT-PCR confirmed that, compared to SM101, the cpr1953 mutant transformed with a plasmid encoding cpr1954 expressed cpr1954 at higher levels while the cpr1954 mutant transformed with a plasmid encoding cpr1953 expressed higher levels of cpr1953. Both overexpressing strains showed near wild-type levels of sporulation, CPE toxin production, and Spo0A production in MDS or MIC. These findings suggest that CPR1953 and CPR1954 do not function together in a step-wise manner, e.g., as a novel phosphorelay. Instead, it appears that, at natural expression levels, the independent kinase activities of both CPR1953 and CPR1954 are necessary for obtaining sufficient Spo0A production and phosphorylation to initiate sporulation and CPE production.


Assuntos
Proteínas de Bactérias , Clostridium perfringens , Enterotoxinas , Histidina Quinase , Esporos Bacterianos , Clostridium perfringens/genética , Clostridium perfringens/enzimologia , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Enterotoxinas/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Regulação Bacteriana da Expressão Gênica , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Camundongos
2.
Int J Antimicrob Agents ; 63(5): 107155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527561

RESUMO

Due to intramolecular ring structures, the ribosomally produced and post-translationally modified peptide mersacidin shows antimicrobial properties comparable to those of vancomycin without exhibiting cross-resistance. Although the principles of mersacidin biosynthesis are known, there is no information on the molecular control processes for the initial stimulation of mersacidin bioproduction. By using Bacillus subtilis for heterologous biosynthesis, a considerable amount of mersacidin could be produced without the mersacidin-specific immune system and the mersacidin-activating secretory protease. By using the established laboratory strain Bacillus subtilis 168 and strain 3NA, which is used for high cell density fermentation processes, in combination with the construction of reporter strains to determine the promoter strengths within the mersacidin core gene cluster, the molecular regulatory circuit of Spo0A, a master regulator of cell differentiation including sporulation initiation, and the global transcriptional regulator AbrB, which is involved in cell adaptation processes in the transient growth phase, was identified to control the initial stimulation of the mersacidin core gene cluster. In a second downstream regulatory step, the activator MrsR1, encoded in the core gene cluster, acts as a stimulatory element for mersacidin biosynthesis. These findings are important to understand the mechanisms linking environmental conditions and microbial responses with respect to the bioproduction of bioactive metabolites including antimicrobials such as mersacidin. This information will also support the construction of production strains for bioactive metabolites with antimicrobial properties.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacteriocinas , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Fatores de Transcrição , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Peptídeos/metabolismo , Peptídeos/genética , Regiões Promotoras Genéticas , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo
3.
mBio ; 15(4): e0224823, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38477571

RESUMO

Sporulation is an important feature of the clostridial life cycle, facilitating survival of these bacteria in harsh environments, contributing to disease transmission for pathogenic species, and sharing common early steps that are also involved in regulating industrially important solvent production by some non-pathogenic species. Initial genomics studies suggested that Clostridia lack the classical phosphorelay that phosphorylates Spo0A and initiates sporulation in Bacillus, leading to the hypothesis that sporulation in Clostridia universally begins when Spo0A is phosphorylated by orphan histidine kinases (OHKs). However, components of the classical Bacillus phosphorelay were recently identified in some Clostridia. Similar Bacillus phosphorelay components have not yet been found in the pathogenic Clostridia or the solventogenic Clostridia of industrial importance. For some of those Clostridia lacking a classical phosphorelay, the involvement of OHKs in sporulation initiation has received support from genetic studies demonstrating the involvement of several apparent OHKs in their sporulation. In addition, several clostridial OHKs directly phosphorylate Spo0A in vitro. Interestingly, there is considerable protein domain diversity among the sporulation-associated OHKs in Clostridia. Further adding to the emergent complexity of sporulation initiation in Clostridia, several candidate OHK phosphotransfer proteins that were OHK candidates were shown to function as phosphatases that reduce sporulation in some Clostridia. The mounting evidence indicates that no single pathway explains sporulation initiation in all Clostridia and supports the need for further study to fully understand the unexpected and biologically fascinating mechanistic diversity of this important process among these medically and industrially important bacteria.


Assuntos
Bacillus , Histidina , Histidina Quinase/genética , Histidina Quinase/metabolismo , Histidina/metabolismo , Fosforilação , Fatores de Transcrição/metabolismo , Bacillus/metabolismo , Clostridium/genética , Clostridium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/metabolismo , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica
4.
Microbiol Spectr ; 12(1): e0229323, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38054717

RESUMO

IMPORTANCE: Polymyxins are considered the last line of defense against multidrug-resistant bacteria. The regulatory mechanism of polymyxin synthesis is poorly studied in Paenibacillus polymyxa. In this study, we found that Abh and AbrB3 negatively regulated, whereas Spo0A positively regulated polymyxin synthesis in P. polymyxa SC2. In addition, a regulatory relationship between Abh, AbrB3, and Spo0A was revealed, which regulate polymyxin synthesis via multiple regulatory mechanisms in P. polymyxa.


Assuntos
Paenibacillus polymyxa , Paenibacillus , Polimixinas , Paenibacillus polymyxa/genética , Paenibacillus/genética
5.
Int J Food Microbiol ; 411: 110517, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38096676

RESUMO

This study aims to investigate the potential role of lactose on cereulide biosynthesis by emetic Bacillus cereus in dairy matrices. The cereulide yields in whole milk and lactose-free milk were investigated using the emetic reference strain F4810/72. To eliminate the influence of complex food substrates, the LB medium model was further used to characterize the effect of lactose on cereulide produced by F4810/72 and five other emetic B. cereus strains. Results showed that the lactose-free milk displayed a 13-fold higher amount of cereulide than whole milk, but the cereulide level could be reduced by 91 % when the lactose content was restored. The significant inhibition of lactose on cereulide yields of all tested B. cereus strains was observed in LB medium, showing a dose-dependent manner with inhibition rates ranging of 89-98 %. The growth curves and lactose utilization patterns of all strains demonstrated that B. cereus cannot utilize lactose as a carbon source and lactose might act as a signal molecule to regulate cereulide production. Moreover, lactose strongly repressed the expression of cereulide synthetase genes (ces), possibly by inhibiting the key regulator Spo0A at the transcriptional level. Our findings highlight the potential of lactose as an effective strategy to control cereulide production in food.


Assuntos
Bacillus cereus , Depsipeptídeos , Animais , Bacillus cereus/genética , Eméticos/metabolismo , Lactose/metabolismo , Leite/metabolismo , Depsipeptídeos/farmacologia
6.
Microbiol Spectr ; 11(4): e0104423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37432122

RESUMO

Bacillus amyloliquefaciens WH1 produces multiple antibiotics with antimicrobial activity and can control bacterial wilt disease caused by Ralstonia solanacearum. Antibacterial substances produced by WH1 and the regulation mechanism are unknown. In this study, it was found that difficidin, and to a minor extent bacillibactin, exhibited antibacterial activity against R. solanacearum. Lipopeptides, macrolactin, bacillaene, and bacilysin had no antibacterial activity. Ferric iron uptake transcriptional regulator Fur bound the promoter region of the dhb gene cluster of bacillibactin biosynthesis. Mutant Δfur showed a higher bacillibactin production and its antibacterial activity increased by 27% than wild-type WH1. Difficidin inhibited R. solanacearum growth and disrupted the integrity of the cells. Lack of transcription factor Spo0A abolished difficidin biosynthesis. Spo0A bound the promoter region of the dfn gene cluster of difficidin biosynthesis. Changing phosphorylation levels of Spo0A via deletion of phosphatase gene spo0E and histidine kinases genes kinA and kinD affected the biosynthesis of difficidin. Deletion of spo0E increased the phosphorylation level of Spo0A and consequently improved the difficidin production. The antibacterial activity of mutant Δspo0E and ΔkinA increased by 12% and 19%. The antibacterial activity of mutant ΔkinD decreased by 28%. Collectively, WH1 produced difficidin to disrupt the cell of R. solanacearum and secreted siderophore bacillibactin to compete for ferric iron. Spo0A regulated difficidin biosynthesis. Spo0A regulates quorum-sensing responses and controls the biosynthesis of secondary metabolites in B. amyloliquefaciens. This study has important findings in the regulation mechanism of antibiotic synthesis and helps to improve antibiotic yield in Bacillus. IMPORTANCE Pathogen R. solanacearum causes bacterial wilt disease in many crops. There is no chemical bactericide that can control bacterial wilt disease. It is vital to find antagonistic microorganisms and antibacterial substances that can efficiently control bacterial wilt disease. B. amyloliquefaciens WH1 could inhibit the growth of R. solanacearum. Via genetic mutation, it was found that difficidin and to a minor extent bacillibactin produced by WH1 acted efficiently against R. solanacearum. The transcription factor Spo0A regulated the synthesis of difficidin. Phosphorylation of Spo0A affected the production of difficidin. Increasing the phosphorylation level of Spo0A improved the difficidin production and antibacterial activity. In-depth analysis of the regulation mechanism of antibiotic difficidin is meaningful for enhancing the control efficiency of WH1. B. amyloliquefaciens WH1 and the antibacterial substances have vast application potential in controlling bacterial wilt disease.


Assuntos
Bacillus amyloliquefaciens , Bacillus amyloliquefaciens/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Bactérias/metabolismo , Antibacterianos , Ferro/metabolismo , Doenças das Plantas/microbiologia
7.
EMBO J ; 42(12): e112858, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140366

RESUMO

The obligate anaerobic, enteric pathogen Clostridioides difficile persists in the intestinal tract by forming antibiotic-resistant endospores that contribute to relapsing and recurrent infections. Despite the importance of sporulation for C. difficile pathogenesis, environmental cues and molecular mechanisms that regulate sporulation initiation remain ill-defined. Here, by using RIL-seq to globally capture the Hfq-dependent RNA-RNA interactome, we discovered a network of small RNAs that bind to mRNAs encoding sporulation-related genes. We show that two of these small RNAs, SpoX and SpoY, regulate translation of the master regulator of sporulation, Spo0A, in an opposing manner, which ultimately leads to altered sporulation rates. Infection of antibiotic-treated mice with SpoX and SpoY deletion mutants revealed a global effect on gut colonization and intestinal sporulation. Our work uncovers an elaborate RNA-RNA interactome controlling the physiology and virulence of C. difficile and identifies a complex post-transcriptional layer in the regulation of spore formation in this important human pathogen.


Assuntos
Clostridioides difficile , Clostridioides , Animais , Humanos , Camundongos , Clostridioides/genética , Clostridioides/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Antibacterianos , RNA/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
8.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203233

RESUMO

The minor secreted proteinase of B. pumilus 3-19 MprBp classified as the unique bacillary adamalysin-like enzyme of the metzincin clan. The functional role of this metalloproteinase in the bacilli cells is not clear. Analysis of the regulatory region of the mprBp gene showed the presence of potential binding sites to the transcription regulatory factors Spo0A (sporulation) and DegU (biodegradation). The study of mprBp activity in mutant strains of B. subtilis defective in regulatory proteins of the Spo- and Deg-systems showed that the mprBp gene is partially controlled by the Deg-system of signal transduction and independent from the Spo-system.


Assuntos
Bacillus pumilus , Bacillus , Lacticaseibacillus casei , Bacillus pumilus/genética , Metaloendopeptidases , Biodegradação Ambiental , Firmicutes
9.
Indian J Microbiol ; 62(4): 531-539, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36458223

RESUMO

In Bacillus, the spore formation process is associated with the synthesis and release of secondary metabolites. A large number of studies have been conducted to systematically elucidate the pathways and mechanisms of spore formation. However, there are no studies have explored the relationship between secondary metabolites and spores. In this study, we investigated the relationship between its secondary metabolite bacillomycin D (BD) and spores using the simpler dipicolonic acid fluorimetry assay for spore counting in Bacillus amyloliquefaciens fmbJ. Our results showed that BD could promote the spore formation of B. amyloliquefaciens fmbJ and had a synergistic effect with certain concentrations of Mn2+. When 15.6 mg/L of BD and 1 mM of Mn2+ were added, the number of fmbJ spores increased from 1.42 × 108 CFU/mL to 2.02 × 108 CFU/mL after 36 h of incubation. The expressions of spore formation (kinA, kinB, kinC, kinD, kinE and spo0A) and Mn-related genes (mntA, mntH, mneS, mneP) were studied by RT-PCR. The results indicated that BD and Mn2+ promoted the spore formation of fmbJ by stimulating the transcription of kinB, kinD and increasing the influence of spo0F-spo0A phosphorylation transmission. This study provided a new idea to improve the spore production of B. amyloliquefaciens and laid the foundation for its industrial production. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-022-01026-9.

10.
J Mol Biol ; 434(13): 167641, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35597553

RESUMO

Clostridioides difficile is an anaerobic, Gram-positive pathogen that is responsible for C. difficile infection (CDI). To survive in the environment and spread to new hosts, C. difficile must form metabolically dormant spores. The formation of spores requires activation of the transcription factor Spo0A, which is the master regulator of sporulation in all endospore-forming bacteria. Though the sporulation initiation pathway has been delineated in the Bacilli, including the model spore-former Bacillus subtilis, the direct regulators of Spo0A in C. difficile remain undefined. C. difficile Spo0A shares highly conserved protein interaction regions with the B. subtilis sporulation proteins Spo0F and Spo0A, although many of the interacting factors present in B. subtilis are not encoded in C. difficile. To determine if comparable Spo0A residues are important for C. difficile sporulation initiation, site-directed mutagenesis was performed at conserved receiver domain residues and the effects on sporulation were examined. Mutation of residues important for homodimerization and interaction with positive and negative regulators of B. subtilis Spo0A and Spo0F impacted C. difficile Spo0A function. The data also demonstrated that mutation of many additional conserved residues altered C. difficile Spo0A activity, even when the corresponding Bacillus interacting proteins are not apparent in the C. difficile genome. Finally, the conserved aspartate residue at position 56 of C. difficile Spo0A was determined to be the phosphorylation site that is necessary for Spo0A activation. The finding that Spo0A interacting motifs maintain functionality suggests that C. difficile Spo0A interacts with yet unidentified proteins that regulate its activity and control spore formation.


Assuntos
Proteínas de Bactérias , Clostridioides difficile , Fatores de Transcrição/metabolismo , Bacillus/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/metabolismo , Regulação Bacteriana da Expressão Gênica , Esporos Bacterianos/metabolismo
11.
J Bacteriol ; 204(5): e0010622, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35416689

RESUMO

The ability of the anaerobic gastrointestinal pathogen Clostridioides difficile to survive outside the host relies on the formation of dormant endospores. Spore formation is contingent on the activation of a conserved transcription factor, Spo0A, by phosphorylation. Multiple kinases and phosphatases regulate Spo0A activity in other spore-forming organisms; however, these factors are not well conserved in C. difficile. Previously, we discovered that deletion of a predicted histidine kinase, CD1492, increases sporulation, indicating that CD1492 inhibits C. difficile spore formation. In this study, we investigate the functions of additional predicted orphan histidine kinases CD2492, CD1579, and CD1949, which are hypothesized to regulate Spo0A phosphorylation. Disruption of CD2492 also increased sporulation frequency, similarly to the CD1492 mutant and in contrast to a previous study. A CD1492 CD2492 mutant phenocopied the sporulation and gene expression patterns of the single mutants, suggesting that these proteins function in the same genetic pathway to repress sporulation. Deletion of CD1579 variably increased sporulation frequency; however, knockdown of CD1949 expression did not influence sporulation. We provide evidence that CD1492, CD2492, and CD1579 function as phosphatases, as mutation of the conserved histidine residue for phosphate transfer abolished CD2492 function, and expression of the CD1492 or CD2492 histidine site-directed mutants or the wild-type CD1579 allele in a parent strain resulted in a dominant-negative hypersporulation phenotype. Altogether, at least three predicted histidine kinases, CD1492, CD2492, and CD1579 (herein, PtpA, PtpB and PtpC), repress C. difficile sporulation initiation by regulating activity of Spo0A. IMPORTANCE The formation of inactive spores is critical for the long-term survival of the gastrointestinal pathogen Clostridioides difficile. The onset of sporulation is controlled by the master regulator of sporulation, Spo0A, which is activated by phosphorylation. Multiple kinases and phosphatases control Spo0A phosphorylation; however, this regulatory pathway is not defined in C. difficile. We show that two predicted histidine kinase proteins, CD1492 (PtpA) and CD2492 (PtpB), function in the same regulatory pathway to repress sporulation by preventing Spo0A phosphorylation. We show that another predicted histidine kinase protein, CD1579 (PtpC), also represses sporulation and present evidence that a fourth predicted histidine kinase protein, CD1949, does not impact sporulation. These results support the idea that C. difficile inhibits sporulation initiation through multiple phosphatases.


Assuntos
Clostridioides difficile , Clostridioides , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridioides difficile/genética , Regulação Bacteriana da Expressão Gênica , Histidina/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Esporos Bacterianos/metabolismo
12.
Microbiol Res ; 254: 126920, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800863

RESUMO

The signal molecule surfactin in biofilm formation has been extensively studied in B. subtilis, but there is rare reports in other Bacillus species. In this study, we compared the surfactin-Spo0A-SinI-SinR/SlrR signalling in regulating biofilm formation amongst four Bacillus species including B. subtilis, B. amyloliquefaciens, B. velezensis, and B. licheniformis. The role of surfactin in biofilm formation was dependent on Bacillus species and strains, and the importance of surfactin was as following: B. velezensis R9 = B. amyloliquefaciens WH1 > B. licheniformis 285-3 > B. subtilis CYY. The global regulator Spo0A was essential and very conservative for biofilm formation in all four Bacillus species. The regulators SinI and SinR played different roles to regulate biofilm formation in different Bacillus species. SinI had no obvious roles in B. velezensis, B. amyloliquefaciens and B. subtilis but had a positive role in B. licheniformis. SinR had no obvious roles in B. subtilis, but played a positive role in B. velezensis, B. amyloliquefaciens and B. licheniformis. The regulator SlrR played a positive role in the biofilm formation of all four Bacillus species. Collectively, surfactin, Spo0A and SlrR are essential for the biofilm formation in all four Bacillus species, and SinR and SinI plays different roles in different Bacillus species.


Assuntos
Bacillus , Biofilmes , Transdução de Sinais , Bacillus/genética , Lipopeptídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Especificidade da Espécie
13.
Microbiology (Reading) ; 168(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36748575

RESUMO

Bacterial genomes harbour cryptic prophages that are mostly transcriptionally silent with many unannotated genes. Still, cryptic prophages may contribute to their host fitness and phenotypes. In Bacillus subtilis, the yqaF-yqaN operon belongs to the prophage element skin, and is tightly repressed by the Xre-like repressor SknR. This operon contains several small ORFs (smORFs) potentially encoding small-sized proteins. The smORF-encoded peptide YqaH was previously reported to bind to the replication initiator DnaA. Here, using a yeast two-hybrid assay, we found that YqaH binds to the DNA binding domain IV of DnaA and interacts with Spo0A, a master regulator of sporulation. We isolated single amino acid substitutions in YqaH that abolished the interaction with DnaA but not with Spo0A. Then, using a plasmid-based inducible system to overexpress yqaH WT and mutant derivatives, we studied in B. subtilis the phenotypes associated with the specific loss-of-interaction with DnaA (DnaA_LOI). We found that expression of yqaH carrying DnaA_LOI mutations abolished the deleterious effects of yqaH WT expression on chromosome segregation, replication initiation and DnaA-regulated transcription. When YqaH was induced after vegetative growth, DnaA_LOI mutations abolished the drastic effects of YqaH WT on sporulation and biofilm formation. Thus, YqaH inhibits replication, sporulation and biofilm formation mainly by antagonizing DnaA in a manner that is independent of the cell cycle checkpoint Sda.


Assuntos
Bacillus subtilis , Proteínas de Ligação a DNA , Proteínas de Ligação a DNA/metabolismo , Prófagos/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/genética , Replicação do DNA
14.
Mol Plant Microbe Interact ; 34(12): 1378-1389, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34890249

RESUMO

Fusaricidins produced by Paenibacillus polymyxa are important lipopeptide antibiotics against fungi. The fusGFEDCBA (fusaricidin biosynthesis) operon is responsible for synthesis of fusaricidins. However, the regulation mechanisms of fusaricidin biosynthesis remain to be fully clarified. In this study, we revealed that fusaricidin production is controlled by a complex regulatory network including KinB-Spo0A-AbrB. Evidence suggested that the regulator AbrB represses the transcription of the fus gene cluster by direct binding to the fus promoter, in which the sequences (5'-AATTTTAAAATAAATTTTGTGATTT-3') located from -136 to -112 bp relative to the transcription start site is required for this repression. Spo0A binds to the abrB promoter that contains the Spo0A-binding sequences (5'-TGTCGAA-3', 0A box) and in turn prevents the further transcription of abrB. The decreasing concentration of AbrB allows for the derepression of the fus promoter repressed by AbrB. The genome of P. polymyxa WLY78 contains two orthologs (named Kin1508 and Kin4833) of Bacillus subtilis KinB, but only Kin4833 activates sporulation and fusaricidin production, indicating that this kinase may be involved in phosphorylating Spo0A to initiate sporulation and regulate the abrB transcription. Our results reveal that Kin4833 (KinB), Spo0A, and AbrB are involved in regulation of fusaricidin production and a signaling mechanism that links fusaricidin production and sporulation.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Paenibacillus polymyxa , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Paenibacillus polymyxa/metabolismo , Transdução de Sinais , Esporos Bacterianos
15.
Microb Cell Fact ; 20(1): 188, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565366

RESUMO

BACKGROUND: Bacillus subtilis is a well-established host for a variety of bioproduction processes, with much interest focused on the production of biosurfactants such as the cyclic lipopeptide surfactin. Surfactin production is tightly intertwined with quorum sensing and regulatory cell differentiation processes. As previous studies have shown, a non-sporulating B. subtilis strain 3NA encoding a functional sfp locus but mutations in the spo0A and abrB loci, called JABs32, exhibits noticeably increased surfactin production capabilities. In this work, the impacts of introducing JABs32 mutations in the genes spo0A, abrB and abh from 3NA into strain KM1016, a surfactin-forming derivative of B. subtilis 168, was investigated. This study aims to show these mutations are responsible for the surfactin producing performance of strain JABs32 in fed-batch bioreactor cultivations. RESULTS: Single and double mutant strains of B. subtilis KM1016 were constructed encoding gene deletions of spo0A, abrB and homologous abh. Furthermore, an elongated abrB version, called abrB*, as described for JABs32 was integrated. Single and combinatory mutant strains were analysed in respect of growth behaviour, native PsrfA promoter expression and surfactin production. Deletion of spo0A led to increased growth rates with lowered surfactin titers, while deletion or elongation of abrB resulted in lowered growth rates and high surfactin yields, compared to KM1016. The double mutant strains B. subtilis KM1036 and KM1020 encoding Δspo0A abrB* and Δspo0A ΔabrB were compared to reference strain JABs32, with KM1036 exhibiting similar production parameters and impeded cell growth and surfactin production for KM1020. Bioreactor fed-batch cultivations comparing a Δspo0A abrB* mutant of KM1016, KM681, with JABs32 showed a decrease of 32% in surfactin concentration. CONCLUSIONS: The genetic differences of B. subtilis KM1016 and JABs32 give rise to new and improved fermentation methods through high cell density processes. Deletion of the spo0A locus was shown to be the reason for higher biomass concentrations. Only in combination with an elongation of abrB was this strain able to reach high surfactin titers of 18.27 g L-1 in fed-batch cultivations. This work shows, that a B. subtilis strain can be turned into a high cell density surfactin production strain by introduction of two mutations.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Lipopeptídeos/análise , Lipopeptídeos/biossíntese , Mutação , Fatores de Transcrição/genética , Reatores Biológicos , Lipopeptídeos/genética , Regiões Promotoras Genéticas
16.
BMC Microbiol ; 21(1): 172, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34102998

RESUMO

BACKGROUND: Bacillus cereus 0-9, a Gram-positive, endospore-forming bacterium isolated from healthy wheat roots in our previous research, is considered to be an effective biocontrol strain against several soil-borne plant diseases. SpoVG, a regulator that is broadly conserved among many Gram-positive bacteria, may help this organism coordinate environmental growth and virulence to survive. This study aimed to explore the multiple functions of SpoVG in B. cereus 0-9. METHODS: The gene knockout strains were constructed by homologous recombination, and the sporulation process of B. cereus 0-9 and its mutants were observed by fluorescence staining method. We further determined the spore yields and biofilm formation abilities of test strains. Transcriptional fusion strains were constructed by overlapping PCR technique, and the promoter activity of the target gene was detected by measuring its fluorescence intensity. The biofilm production and colonial morphology of B. cereus 0-9 and its mutants were determined to study the functions of the target genes, and the transcription level of the target gene was determined by qRT-PCR. RESULTS: According to observation of the sporulation process of B. cereus 0-9 in germination medium, SpoVG is crucial for regulating sporulation stage V of B. cereus 0-9, which is identical to that of Bacillus subtilis but differs from that of Bacillus anthracis. In addition, SpoVG could influence biofilm formation of B. cereus 0-9. The transcription levels of two genes closely related to biofilm-formation, sipW and calY, were downregulated in a ΔspoVG mutant. The role of SpoVG in regulating biofilm formation was further explored by deleting the genes abrB and sinR in the ΔspoVG mutant, respectively, generating the double mutant strains ΔspoVGΔabrB and ΔspoVGΔsinR. The phenotypes of these double mutants were congruent with those of the single abrB and sinR deletion strains, respectively, which showed increased biofilm formation. This indicated that spoVG was located upstream of abrB and sinR in the regulatory pathway of B. cereus biofilm formation. Further, the results of qRT-PCR and the luminescence intensity of transcriptional fusion strains indicated that spoVG gene deletion could inhibit the transcription of Spo0A. CONCLUSIONS: SpoVG, an important regulator in the sporulation of B. cereus, is located upstream of Spo0A and participates in regulation of biofilm formation of B. cereus 0-9 through regulating the transcription level of spo0A. Sporulation and biofilm formation are crucial mechanisms by which bacteria respond to adverse conditions. SpoVG is therefore an important regulator of Spo0A and is crucial for both sporulation and biofilm formation of B. cereus 0-9. This study provides a new insight into the regulatory mechanism of environmental adaptation in bacteria and a foundation for future studies on biofilm formation of B. cereus.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Esporos Bacterianos/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Bacillus cereus/genética , Bacillus cereus/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Regiões Promotoras Genéticas , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
17.
mSphere ; 6(2)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910991

RESUMO

Clostridium perfringens type F food poisoning (FP) strains cause one of the most common foodborne illnesses. This FP develops when type F FP strains sporulate in the intestines and produce C. perfringens enterotoxin (CPE), which is responsible for the diarrhea and abdominal cramps of this disease. While C. perfringens can produce up to three different sialidases, the current study surveyed FP strains, which confirmed the results of a previous study that they consistently carry the nanH sialidase gene, often as their only sialidase gene. NanH production was found to be associated with sporulating cultures of the surveyed type F FP strains, including SM101 (a transformable derivative of a FP strain). The sporulation-associated regulation of NanH production by strain SM101 growing in modified Duncan-Strong medium (MDS) was shown to involve Spo0A, but it did not require the completion of sporulation. NanH production was not necessary for either the growth or sporulation of SM101 when cultured in MDS. In those MDS cultures, NanH accumulated in the sporulating mother cell until it was released coincidently with CPE. Since CPE becomes extracellular when mother cells lyse to release their mature spores, this indicates that mother cell lysis is also important for NanH release. The copresence of NanH and CPE in supernatants from lysed sporulating cultures was shown to enhance CPE cytotoxicity for Caco-2 cells. This enhancement was attributable to NanH increasing CPE binding and could be replicated with purified recombinant NanH. These in vitro findings suggest that NanH may be an accessory virulence factor during type F FP.IMPORTANCEClostridium perfringens type F strains cause the second most common bacterial foodborne illness in the United States. C. perfringens enterotoxin (CPE) is responsible for the diarrhea and cramping symptoms of this food poisoning (FP). Previous studies showed that NanI sialidase can enhance CPE activity in vitro While many type F FP strains do not produce NanI, they do consistently make NanH sialidase. This study shows that, like CPE, NanH is produced by sporulating type F FP strains and then released extracellularly when their sporulating cells lyse to release their mature spore. NanH was shown to enhance CPE cytotoxicity in vitro by increasing CPE binding to cultured Caco-2 cells. This enhancement could be important because many type F FP strains produce less CPE than necessary (in a purified form) to cause intestinal pathology in animal models. Therefore, NanH represents a potential accessory virulence factor for type F FP.


Assuntos
Proteínas de Bactérias/genética , Infecções por Clostridium/microbiologia , Clostridium perfringens/crescimento & desenvolvimento , Clostridium perfringens/metabolismo , Enterotoxinas/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Células CACO-2 , Clostridium perfringens/patogenicidade , Meios de Cultura/química , Enterotoxinas/genética , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Fatores de Virulência/metabolismo
18.
Front Microbiol ; 12: 617269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584620

RESUMO

The spores of Clostridium botulinum Group II strains pose a significant threat to the safety of modern packaged foods due to the risk of their survival in pasteurization and their ability to germinate into neurotoxigenic cultures at refrigeration temperatures. Moreover, spores are the infectious agents in wound botulism, infant botulism, and intestinal toxemia in adults. The identification of factors that contribute to spore formation is, therefore, essential to the development of strategies to control related health risks. Accordingly, development of a straightforward and versatile gene manipulation tool and an efficient sporulation-promoting medium is pivotal. Our strategy was to employ CRISPR-Cas9 and homology-directed repair (HDR) to replace targeted genes with mutant alleles incorporating a unique 24-nt "bookmark" sequence that could act as a single guide RNA (sgRNA) target for Cas9. Following the generation of the sporulation mutant, the presence of the bookmark allowed rapid generation of a complemented strain, in which the mutant allele was replaced with a functional copy of the deleted gene using CRISPR-Cas9 and the requisite sgRNA. Then, we selected the most appropriate medium for sporulation studies in C. botulinum Group II strains by measuring the efficiency of spore formation in seven different media. The most effective medium was exploited to confirm the involvement of a candidate gene in the sporulation process. Using the devised sporulation medium, subsequent comparisons of the sporulation efficiency of the wild type (WT), mutant and "bookmark"-complemented strain allowed the assignment of any defective sporulation phenotype to the mutation made. As a strain generated by complementation with the WT gene in the original locus would be indistinguishable from the parental strain, the gene utilized in complementation studies was altered to contain a unique "watermark" through the introduction of silent nucleotide changes. The mutagenesis system and the devised sporulation medium provide a solid basis for gaining a deeper understanding of spore formation in C. botulinum, a prerequisite for the development of novel strategies for spore control and related food safety and public health risk management.

19.
mSphere ; 5(6)2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148827

RESUMO

Clostridioides difficile is the leading cause of nosocomial infection and is the causative agent of antibiotic-associated diarrhea. The severity of the disease is directly associated with toxin production, and spores are responsible for the transmission and persistence of the organism. Previously, we characterized sin locus regulators SinR and SinR' (we renamed it SinI), where SinR is the regulator of toxin production and sporulation. The SinI regulator acts as its antagonist. In Bacillus subtilis, Spo0A, the master regulator of sporulation, controls SinR by regulating the expression of its antagonist, sinI However, the role of Spo0A in the expression of sinR and sinI in C. difficile had not yet been reported. In this study, we tested spo0A mutants in three different C. difficile strains, R20291, UK1, and JIR8094, to understand the role of Spo0A in sin locus expression. Western blot analysis revealed that spo0A mutants had increased SinR levels. Quantitative reverse transcription-PCR (qRT-PCR) analysis of its expression further supported these data. By carrying out genetic and biochemical assays, we show that Spo0A can bind to the upstream region of this locus to regulates its expression. This study provides vital information that Spo0A regulates the sin locus, which controls critical pathogenic traits such as sporulation, toxin production, and motility in C. difficileIMPORTANCEClostridioides difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. During infection, C. difficile spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. In C. difficile, the sin locus is known to regulate both sporulation and toxin production. In this study, we show that Spo0A, the master regulator of sporulation, controls sin locus expression. Results from our study suggest that Spo0A directly regulates the expression of this locus by binding to its upstream DNA region. This observation adds new detail to the gene regulatory network that connects sporulation and toxin production in this pathogen.


Assuntos
Proteínas de Bactérias/genética , Clostridioides difficile/genética , Regulação Bacteriana da Expressão Gênica/genética , Loci Gênicos , Esporos Bacterianos/fisiologia , Supressão Genética , Proteínas de Bactérias/metabolismo , Clostridioides difficile/patogenicidade , Clostridioides difficile/fisiologia , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Esporos Bacterianos/genética
20.
Benef Microbes ; 11(6): 573-589, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33032473

RESUMO

Clostridium tyrobutyricum shows probiotic properties and can affect the composition of gut microbiota and regulate the intestinal immune system. Compared with other probiotics, this spore-producing bacterium shows unparalleled advantages in commercial production. In addition to being resistant to extreme living environments for extended periods, its endophytic spores are implicated in inhibiting cancer cell growth. We speculated that C. tyrobutyricum spores can also promote gut health, which mean it can maintain intestinal homeostasis. To date, the beneficial effects of C. tyrobutyricum spores on gut health have not been reported. In this study, a Spo0A-overexpressing C. tyrobutyricum strain was developed to increase spore production, and its probiotic effects on the gut were assessed. Compared with the wild-type, the engineered strain showed significantly increased sporulation rates. Mice administered with the engineered strain exhibited enhanced intestinal villi and the villus height/crypt depth ratio, weight gain and improved Firmicutes/Bacteroidetes ratio to facilitate intestinal homeostasis. This study demonstrated for the first time that enhanced spore production in C. tyrobutyricum can improve intestinal homeostasis, which is advantageous for its commercial application in food and pharmaceutical industry.


Assuntos
Bacteroidetes/crescimento & desenvolvimento , Clostridium tyrobutyricum/fisiologia , Firmicutes/crescimento & desenvolvimento , Microbioma Gastrointestinal , Intestino Delgado/microbiologia , Esporos Bacterianos/crescimento & desenvolvimento , Fatores de Transcrição/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/classificação , Peso Corporal , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/crescimento & desenvolvimento , Firmicutes/classificação , Expressão Gênica , Homeostase , Mucosa Intestinal/anatomia & histologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Viabilidade Microbiana , Plasmídeos , Probióticos , Fatores de Transcrição/metabolismo , Transformação Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...